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Abstract The Kardar-Parisi-Zhang (w) equation describing kinetic roughening is solved 
numerically for (3 + 1)-dimensional systems in the strong-coupling phase. By massive use of 
supercompudng tools we calculate for the first time the exponent @(= 0.181 iO.007) with an 
accuracy comparable with that of lattice growth model simulations. A possible source of errors 
in parallel Monte Carlo calculations is pointed out, 

1. Introduction 

Algebraic roughening of growing surfaces can be found in several models [l], but here we 
concentrate on the case of the Kardar-Parisi-Zhang (KPq equation [2] 

where v > 0 guarantees the stability of globally flat surfaces, A describes lateral growth and 
q is a Gaussian noise with correlator ( ~ ( z ,  f)q(z', t ' ))  = 2 D 6 ( z  - z')S(t - f'). 

One possible quantity of 
interest is the surface width 

Roughening implies scale-invariant surface fluctuations. 

where the bar denotes the spatial average over a (sub)system of linear size L and the angular 
brackets mean the disorder average over many realizations of the noise 7. 

Family and Vicsek [3] suggested for w the scaling form 

( w )  - L ' f ( t /L?  (3) 

where f ( x )  - xp  with p = < / z  for x << 1, and f ( x )  - constant for x >> 1. The roughness 
exponent 1 and the dynamical exponent z fulfil a scaling relation [4-6] 

< + z = 2 .  (4) 

As the one-loop dynamical renormalization group (RG) [7] shows, there exists only one 
effective coupling constant of physical relevance, namely 

A=D g' = - 
U3 ' 

(5)  
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The RG [7] predicts a phase diagram for KPZ growth [8] that is dependent on the surface 
dimension d of the (d + 1)-dimensional system. In 3 + 1 dimensions two distinct phases 
exist: algebraic roughening is expected only in the rough phase at large g'. Unfortunately, 
the RG is not able to predict values for the exponents. 

The exponent @ has been measured in several lattice growth models (e.g. [9-1 I]). Direct 
numerical solutions of the Kpz equation [8,12] are in agreement with these results for d = 1 
and 2, but in the (3 + 1)-dimensional case no data of comparable precision have so far been 
published. We only found some indication of the phase transition, but due to the technical 
difficulties of the large-scale simulations required we were not able to obtain a reliable value 
for @. Here we extend this earlier work [SI and present results which were obtained using 
high-performance vector and parallel vector supercomputers, for which our program was 
specially adapted. 

In the next section we discuss our improved algorithm. In section 3 we present our 
results and report on a problem arising when different sequences of the same random number 
generator (RNG) are used in domain decomposition on the parallel computer. Finally, we 
give a short summary. 
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2. Technique 

We used the Euler algorithm to integrate equation (1) numerically. In [8] we presented 
a detailed discussion and test of this method. Thus we want to show here only the 
dimensionless discretized version of equation (I), which was implemented 

+ G R n ( t ) .  - (6) 

Here R, are uniformly distributed random numbers with -1 < R, < 4. All simulations 
start with a flat surface: h,(O) = 0. The spatial discretization parameter Ax is related [SI 
to the dimensionless coupling constant by g = (Ax)'/Z, and the time discretization At has 
to be small enough to guarantee the numerical stability. 

We refined the existing algorithm in order to minimize memory requirements. It will 
be shown that this technique is also perfectly adapted to parallel supercomputers, with an 
additional advantage with respect to communication times. 

Normally at least two arrays of system size are needed to store the field h, and its 
update hk which after completion of one lattice sweep is copied into h,  (fig& I@)). 
This is not necessary as only nearest-neighbour sites are needed to update h, and as the 
updating is done in a typewriter mode starting with hl and ending with hN. (Note that we 
use helical boundary conditions so that the site index E is replaced by a one-dimensional 
index.) Memory locations which are no longer needed can be overwritten: h; is stored in 
the location of h,-a, where A = Ld-' (figure I@)). The boundary conditions at the upper 
and lower ends of the lattice are implemented using (d - 1)-dimensional buffer 'lines' with 
A sites each. 

The system is shifted in each sweep with respect to the physical'memory locations. 
(Even if no translational invariance is present, this drift may be easily corrected if necessary 
by protocolling the number of sweeps which were made.) 
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Figure 1. Helical boundary conditions with and without ‘Viclt‘ (see ext). Light: buffer lines. 

On vector supercomputers this technique saves memory, which allows larger systems to 
be investigated. On parallel supercomputers this benefit exists as well but in addition there 
is a slight time advantage which will be described below. 

To take advantage of the full computing performance of all processors (’nodes’) and 
because of the large system size, we used domain decomposition for the parallelization of 
the existing program. This means slicing the whole system and assigning one slice to each 
of the nodes. After every sweep one has to exchange buffer lines between neighbouring 
nodes. 

Such communication between the processors is very time consuming. On an IPSC/860 
parallel computer, for instance, the setup of a connection between two nodes takes as much 
time as 1400 floating-point operations (at typically 8 MFlopshode). This is required every 
time a node has to send data to another one. On top of that the transmission of every byte 
takes the same time as approximately four floating-point operations. 

According to figure I@) each node communicates one line to the upper and one to the 
lower neighbour to update the corresponding buffer lines: Two connections have to be set 
up and two messages (of typically 100 kbyte each) have to be sent. In our case, figure l(b), 
only one connection (to the upper neighbour) is needed for transmitting a message of double 
size (the two uppennost lines of figure I@)). This reduces the communication overhead, 

3. Results 

We chose a system size of 1603. The dimensionless coupling constant was g = 357.7, 
which is expected [SI to be deep in the rough strong-coupling phase. At was adjusted to 
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1.256 to achieve numerical stability. The random numbers were generated with an R250 
Tausworthe RNG [13]. One run represents 15923 timesteps. 

On the vector computers (Cray Y-MP, - 195 MFlops; NEC SX-3, - 571 MFlops) 
no problems appeared. Figure 2 shows data from averaging over 25 runs. The resulting 
effective exponent in the asymptotic scaling regime (t > 2000) is 
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pep = 0.181 f0.007 (6) 

with very conservative error bars. This is in good agreement with values obtained by other 
authors (Forrest and Tang [lo], 0.180-+0.005; Ala-Nissila etal [Ill, 0.180f0.002), which 
were obtained fiom lattice growth madels. 

time t 

Figure 2. Log-log plot of the width w againsr time L as obtained from the numerical solulion 
of the (3 + I)-dimensional KPZ equation: g = 357.7: At = 1.256. The system size wm 
I60 x 160 x 160 and an average over 25 runs was taken. The broken curve represen$ the 
effective exponent perf = 0.181 in the asymptotic scaling regime ( f  > 2000). Statistical errors 
are indicated by the straight lines above and below the curve. 

On the IpSC/860 parallel computer problems arose with the RNG. In order to keep 
communications small, independent RNGs have been started on all 32 nodes. Because of the 
large period (e.g. 1141). we decided to use the R250 Tausworthe RNG, initialized differently 
on all the nodes. We observed a strong dependence on the starting and setup procedure for 
this RNG. 

Figure 3 shows data obtained if one determines !he 250 start numbers for the R250 
from a linear congruential RNG and uses consecutive odd numbers as seeds for the different 
nodes. Also shown are the data from figure 2, where only a single sequence of this RNG 
per run was used. The system parameters are equal in both cases, apart from different 
numbers of runs. The values of the surface width obtained from the parallel program 
are systematically too small, as if the system had a smaller size. We interpret this as 
an indication of correlations among the random number sequences on different nodes. By 
contrast, the recently reported correlations within one sequence produced by the Tausworthe 
RNG [I51 have no measurable effect in the present simulation, as had already been checked 
in [8], where a linear congruential RNG and the R250 gave the same results. 
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Figure 3. Comparison of the data from figure 2 (broken upper curve) to the data achieved on 
the parallel computer IPSU860 (full lower curve). g = 357.7, Ar = 1.256 and system size 
160 x 160 x 160 in both cases. On the pnrallel computer an average over 55 runs was taken. 
The lower slope of the Iatter curve indicates problems with the WO. 

The problem of correlations among different random number sequences is not specific 
to the Tausworthe RNG. We also observed it in the linear congruential RNG used to start the 
R250 

(32-bit machine). We started sequences m = 1 . . . M with seeds lo'"' = 1:) + 2m. Plotting 
I,?, . . . , for arbitrarily large fixed n reveals strong correlations among the numbers 
which form a type of saw-tooth curve. 

Because of domain decomposition these correlations amount to a reduction in shot noise 
on scales larger than one domain and can lead to an effective reduction in the system size, 
as described above. This problem can presumably be avoided by warming the RNGs up over 
random time intervals. 

4. Summary 

We have presented new results for rough (3+1)-dimensionaI systems obtained by solving the 
KPZ equation numerically. In order to simulate the largest possible systems we optimized 
the usage of memory. As a side effect this also reduced the communication overhead on 
the parallel computer. This technique is not specific to the problem studied here but should 
work for many other models in statistical physics as well. 

We analysed a problem which occurs on parallel computers using domain decomposition, 
if the RNGs on the different nodes are not very carefully initialized. An unexpected strong 
dependence on the setup procedure was observed, which indicates correlations among 
different sequences. 

Finally, the resulting effective exponent ,9a = 0.181 & 0.007 is in good agreement 
with exponents obtained previously [lo, 111 from lattice growth models. 
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